Effect of Aerobic Fitness on Cortisol Response and HPA-Axis Reactivity at Different Aerobic Exercise Intensities


  • Phillip Do University of British Columbia and University of Alberta
  • Flora Guo University of Waterloo
  • Darren Warburton University of British Columbia




Cortisol is a hormone typically associated with the body’s reaction to a stressor. As exercise intensity increases, the HPA-axis reacts to the negative net energy demand by releasing cortisol to increase the availability of energy substrates to supply the working muscles and organs. This evidence-based review assesses multiple positive and negative feedback mechanisms associated with the HPA-axis to explain its reactivity to aerobic exercise at different intensities where a marked increase in salivary cortisol is observed at exercise intensities above 60% of one’s heart rate reserve. The review also explains different mechanisms as to how an increase in maximal aerobic fitness can influence the salivary cortisol levels during exercise. Recommendations for future studies in this area on how to design a study to mitigate confounding variables are also discussed.

Author Biographies

Phillip Do, University of British Columbia and University of Alberta

UBC BKin Graduate (2018). Law student at the University of Alberta.

Flora Guo, University of Waterloo

Biomedical engineering student at the University of Waterloo.

Darren Warburton, University of British Columbia

Professor at the University of British Columbia. Former supervisor of the lead author of the paper.


Baynes, J., & Dominiczak, M. (2009). Medical Biochemistry. Mosby Elsevier.

Bernstein, E. E., & McNally, R. J. (2017). Acute aerobic exercise hastens emotional recovery from a subsequent stressor. Health Psychology, 36(6), 560-567. DOI: https://doi.org/10.1037/hea000 82

Bilek, L. D., Venema, D. M., Willett, G. M., & Lyden, E. R. (2008). Use of the human activity profile for estimating fitness in persons with arthritis. Arthritis & Rheumatism, 59, 659-664. DOI: https://doi.org/10.1002/art.23572

Brooks, G.A. (1985). Anaerobic threshold. Review of the concept and directions for future research. Med. Sci. Sports Exerc, 17(2), 22-34. URL: https://pubmed.ncbi.nlm.nih.gov/ 884959/

Brownlee, K. K., Moore, A. W., & Hackney, A. C. (2005). Relationship between circulating cortisol and testosterone: influence of physical exercise. Journal of Sports Science & Medicine, 4(1), 76–83. URL: https://pubmed.ncbi.nlm.nih.gov/ 4431964/

Budde, H., Voelcker-Rehage, C., Pietrassyk Kendziorra, S., Machado, S., Ribeiro, P., & Arafat, A. M. (2010). Steroid hormones in the saliva of adolescents after different exerciseintensities and their influence on working memory in a school setting. Psychoneuroendocrinology, 35(3), 382-391. URL: https://pubmed.ncbi.nlm.nih.gov/9716238

Buono, M. J., Yeager, J. E., & Sucec, A. A. (1987). Effect of aerobic training on the plasma ACTH response to exercise. J. Appl. Physiol, 63(6), 2499-2501. DOI: https://doi.org/10.1152/jappl.197.636.2499

Burke, H. M., Davis, M. C., Otte, C., Mohr, D. C. (2005). Depression and cortisol responses to psychological stress: A meta analysis. Psychoneuroendocrinology, 30(9), 846-856. URL: https://citeseerx.ist.psu.edu/viewoc/download?doi=

Carr, D. B., Bullen, B. A., Skrinar, B. A., Arnold, M. A., Rosenblatt, M., Beitens, I. Z., Martin, J.B., McArthur J. W. (1981). Physical conditioning facilitates the exercise-induced secretion of beta-endorphin and beta-lipotropin in women. N. Engl. J. Med, 305, 560 563. DOI: https://doi.org/10.1056/NEJM19109033051006

Davies, C. T., & Few, J. D. (1973). Effects of exercise on adrenocortical function. J Appl Physiol, 35, 887-91. DOI: https://doi.org/10.1152/jappl.1973.35.6.887

Cumming, D. C., Quigley, M. E. & Yen, S. S.C. (1983). Acute suppression of circulating testosterone levels by cortisol in men. The Journal of Clinical Endocrinology & Metabolism, 57(3), 671–673. DOI: https://doi.org/10.1210/jcem-573-671

Cunha, F., Midgley, A., Monteiro, W., & Farinatti, P. (2010). Influence of cardiopulmonary exercise testing protocol and resting VO2 assessment on %HRmax, %HRR,%VO2max and %VO2R relationships. International Journal of Sports Medicine, 31(5), 319-326.DOI: https://doi.org/10.1055/s000-1248283

Dalleck, L. C., & Kravitz, L. (2006). Relationship between %heart rate reserve and % VO2 reserve during elliptical crosstrainer exercise. Journal of Sports Science & Medicine, 5(4), 662-671. URL: https://pubmed.ncbi.nlm.nih.gov/4357963/

Davidson, M., & Morton, N. D. (2007). A systematic review of the human activity profile. Clinical Rehabilitation, 21(2),151-162. DOI: https://doi.org/10.1177/0269210609475

Davies, C. T. M., Few, J. D. (1973). Effects of exercise on adrenocortical function. Journal of Applied Physiology, 35, 887-891. URL: https://journals.physiology.org/di/pdf/10.1152/jappl.1973.35.6.887

Del Corral, P., Mahon, A. D., Duncan, G. E., Howe, C. A., & Craig, B. W. (1994). The effect of exercise on serum and salivary cortisol in male children. Medicine and Science in Sports and Exercise, 26(11), 1297 1301. URL: https://pubmed.ncbi.nlm.nih.gov/7837948/

Duclos, M., Corcuff, J. B., Rashedi, M., Fougere, V., & Manier, G. (1997). Trained versus untrained men: different immediate post exercise responses of pituitary adrenal axis. European Journal of Applied Physiology and Occupational Physiology, 75(4), 343-350. DOI: 10.1007/s004210050170

Duclos, M., Corcuff, J. B., Pehourcq, F., & Tabarin, A. (2001). Decreased pituitary sensitivity to glucocorticoids in endurance trained men. European Journal of Endocrinology, 144, 363-368. DOI: https://doi.org/10.1530/eje.0.140363

Duclos, M., Guinot, M., & Le Bouc, Y. (2007). Cortisol and GH: Odd and controversial ideas. Appl Physio Nutr Metab, 32(5), 895–903. DOI: 10.1139/H07-064

Duclos, M., & Tabarin, A. (2010). Exercise, training and the hypothalamo pituitary-adrenal axis. In Endocrine Updates (Vol. 29, pp. 9-15). Boston, MA: Springer US. DOI: 10.1007/978-1-4419-7014-5_2

Fuqua, J. S., & Rogol, A. D. (2013). Neuroendocrine alterations in the exercising human. Implications for energy homeostasis. Metabolism, 62(7), 911-921. DOI: 10.1016/j.metabol.2013.01.016

Heuser, I .J .E., Wark, H. J., Keul, J., & Holsboer, F. (1991). Hypothalamic pituitary–adrenal axis function in elderly endurance athletes. J. Clin. Endocrinol. Metab. 73, 485–488. DOI: 10.1152/physiolgenomics.00006.016

Hill E.E., Zack, E., Battaglini, C., Viru, M., Viru, A., & Hackney, A. C. (2008). Exercise and circulation cortisol levels: the intensity threshold effect. J Endocrinol Invest, 31, 587-591. URL: https://pubmed.ncbi.nlm.nih.gov/8787373/

Impellizzeri, F. M., Rampinini, E., & Marcora, S. M. (2004). Physiological assessment of aerobic training in soccer. Journal of Sports Sciences, 23(6), 583-592. DOI: https://doi.org/10.1080/026404040021278

Inder, W. J., Hellemans, J., Ellis, M. J., Evans, M. J., Livesey, J. H., & Donald, R. A. (1995). Elevated basal adrenocorticotropin and evidence for increased central opioid tone in highly trained male athletes. Journal of Clinical Endocrinology and Metabolism, 80, 244-248. DOI: https://doi.org/10.1210/jcem.80..789620

Izawa, S., Kim, K., Akimoto, T., Ahn, N.,Lee, H., & Suzuki, K. (2009). Effects of cold environment exposure and cold acclimatization on exercise induced salivary cortisol response. Wilderness & Environmental Medicine, 20(3), 239-243. DOI: https://doi.org/10.1580/07WEME OR-123R2.1

Jacks, D. E., Sowash, J., Anning, J., McGloughlin, T., & Andres, F. (2002). Effect of exercise at three exercise intensities on salivary cortisol. The Journal of Strength & Conditioning Research, 16(2), 286-289. URL: https://pubmed.ncbi.nlm.nih.gov/1991783/

Kanaley, J., Boileau, R., Bahr, J., Misner, J., & Nelson, R. (1992). Cortisol levels during prolonged exercise: The influence of menstrual phase and menstrual status. International Journal of Sports Medicine, 13(4),332–336. URL: https://www.thiemeconnect.de/products/ejournals/abstract/10.105/s-2007-1021276

Kirschbaum, C., & Hellhammer, D. H. (1994). Salivary cortisol in psychoneuroendocrine research: recent developments and applications. Psychoneuroendocrinology, 19(4), 313-333. URL: https://linkinghub.elsevier.com/retrieve/pii/0306453094900132

Kraemer, W. J., French, D. N., Spiering, B.A., Volek, J. S., Sharman, M. J., Ratamess, N. A., ... & Maresh, C. M. (2005). Cortitrol supplementation reduces serum cortisol responses to physical stress. Metabolism, 54(5), 657-668. DOI: https://doi.org/10.1016/j.metabol.2004.12.010

Kraemer, W. J., & Ratamess, N. A. (2005). Hormonal responses and adaptations to resistance exercise and training. Sports Med, 35, 339–361. DOI: https://doi.org/10.2165/0000756200535040-00004

Lin, X., Zhang, X., Guo, J., Robersm C. K., McKenzie, S., Wu, W. C., Liu, S., & Song, Y. (2015). Effects of exercise training on cardiorespiratory fitness and biomarkers of cardiometabolic health: A systematic review and meta-analysis of randomized controlled trials. Journal of the American Heart Association, 4(7), 1-28. URL: https://www.ahajournals.org/doi10.1161/JAHA.115.002014

Luger, A., Deuster, P. A., Kyle, S. B., Gallucci, W. T., Montgomery, L. C., Gold, P. W., ... & Chrousos, G. P. (1987). Acute hypothalamic pituitary–adrenal responses to the stress of treadmill exercise. New England Journal of Medicine, 316(21), 1309-1315. URL: https://doi.org/1.1056/NEJM198705213162105

Marthur, D., Toriola, A., Dada, O. (1986). Serum cortisol and testosterone levels in conditionedmale distance runners and non-athletes after maximal exercise. Journal of Sports Medicine, 26, 245-250. URL: https://pubmed.ncbi.nlm.nih.gov/795918/

Mastorakos, G., & Pavlatou, M. (2005). Exercise as a stress model and the interplay between the hypothalamus-pituitary-adrenal and the hypothalamus-pituitary thyroid axes. Hormone and Metabolic Research, 37(9), 577-584. DOI: https://doi.org/10.1055/s-2005870426

McGuigan, M. R., Egan, A. D., & Foster, C. (2004). Salivary cortisol responses and perceived exertion during high intensity and low intensity bouts of resistance exercise. Journal of Sports Science and Medicine, 3, 8-15. URL: https://pubmed.ncbi.nlm.nih.gov/24497815/

McPartland, D., Pree, A., Malpeli, R., & Telford, A. (2010). Nelson Physical Education Studies For WA. Australia: Nelson. ISBN 9780170182027. URL: https://cengage.com.au/product/ttle/nelson-physical-educationstudies-for-wa-3a3/isbn/9780170227124

Mitchell, J. B., Pizza, F. X., Paquet, A., Davis, B. J., Forrest, M. B., & Braun, W. A. (1998). Influence of carbohydrate status on immune responses before and after endurance exercise. Journal of Applied Physiology, 84(6), 1917–1925. DOI: https://doi.org/10.1152/jappl.

Moreira, A., Aoki, M., Arruda, A., Machado, D., Elsangedy, H., & Okano, A. (2018). Salivary BDNF and cortisol responses during high‐intensity exercise and official basketball matches in sedentary individuals and elite players, Journal of Human Kinetics, 65(1), 139-149. DOI: https://doi.org/10.2478/hukin2018-0040

Obminski, Z. & Stupnicki, R. (1997). Comparison of the testosterone-to cortisol ratio values obtained from hormonal assays in saliva and serum. Journal of Sports Medicine and Physical Fitness, 37, 50-55. URL: https://pubmed.ncbi.nlm.nih.gov/190125/

Ockenfels, M. C., Porter, L., Smyth, J., Kirschbaum, C., Hellhammer, D. H. & Stone, A. A. (1995). Effect of chronic stress associated with unemployment on salivary cortisol. Psychosomatic Medicine, 57(5), 460-467. DOI: https://doi.org/10.1097/0000684-19950900000008

Panagiotakopoulos, L., & Neight, G. N. (2014). Development of the HPA axis: where and when do sex differences manifest? Frontiers in Neuroendocrinology, 35(3), 285-302. DOI: 10.1016/j.yfrne.2014.03.002

Ratamess, N. A., Kraemer, W. J., Volek, J. S., Mares, C. M., Vanhees, J. L., Sharma, M. J., Rubin, M. R., French, D. N., Vescov, J. D., Silvestre, R., Hatfield, D. L., Fleck, S. J., & Deschenes, M.R. (2005). Effects of heavy resistance exercise volume on post-exercise androgen receptor content in resistance trained men. J. Steroid Biochem. Mol. Biol, 93, 35–42. DOI: https://doi.org/10.1016/j.jsbmb.004.1.019

Rimmele, U., Seiler, R., Marti, B., Wirtz, P. H., Ehlert, U., & Heinrichs, M. (2009). The level of physical activity affects adrenal and cardiovascular reactivity to psychosocial stress. Psychoneuroendocrinology, 34(2), 190-198. DOI: https://doi.org/10.1016/j.psyneun.2008.08.023

Rimmele, U., Zellweger, B. C., Marti, B., Seiler, R., Mohiyeddini, C., Ehlert, U., & Heinrichs, M. (2007). Trained men show lower cortisol, heart rate and psychological responses to psychosocial stress compared with untrained men. Psychoneuroendocrinology, 32(6), 627-635. DOI: https://doi.org/10.1016/j.psyneun.2007.04.005

Rubinow, D. R., Roca, C. A., Schmidt, P. J.,Danaceau, M. A., Putnam, K., Cizza, G., Chrousos, G., & Nieman, L. (2005). Testosterone suppression of CRH-stimulated cortisol in men. Neuropsychopharmacology, 30(10), 1906–1912. DOI: https://doi.org/10.1038/sj.npp.1 00742

Rudolph, D. L., & McAuley, E. (1995). Self efficacy and salivary cortisol responses to acute exercise in physically active and less active adults. Journal of Sport and Exercise Psychology, 17(2), 206-213. DOI: https://doi.org/10.1080/02640498366830

Rudolph, D. L., & McAuley, E. (1998). Cortisol and affective responses to exercise. Journal of sports sciences, 16(2), 121-128. DOI: https://doi.org/10.1080/10.1080026404198366830

Sandoval, D. A., Guy, D. L. A., Richardson, M. A., Ertl, A. C., & Davis, S. N. (2004). Effects of low and moderate antecedent exercise on counterregulatory responses to subsequent hypoglycemia in type 1 diabetes. Diabetes, 53, 1798- 1806. DOI: 10.1111/j.13995448.2007.00248.x

Sapolsky, R. M. (1993). Potential behavioural modification of glucocorticoid damage to the hippocampus. Behav. Brain Res, 30, 175–182. DOI: https://doi.org/10.1016/0166438(93)90133-B

Silverman, H. G. & Mazzeo, R. S. (1996). Hormonalresponses to maximal and submaximal exercise in trained and untrained men of various ages, The Journals of Gerontology: Series A, 51A(1), B30–B37. DOI: https://doi.org/10.1093/gerona/1A.1.B30

Swain, D. P., Leutholtz, B. D., King, M. E., Haas, L. A., & Branch, J. D. (1998). Relationship between % heart rate reserve and % VO2 reserve in treadmill exercise. Medicine and Science in Sports and Exercise, 30(2), 318-321. DOI: https://doi.org/10.1097/0000578-199802000-0022

Vining, R. F., McGinley, R. A., Maksvytis, J. J., & Ho, K. Y. (1983). Salivary cortisol: a better measure of adrenal cortical function than serum cortisol. Annals of Clinical Biochemistry: An international journal of biochemistry in medicine, 20(6), 329-335. DOI: https://doi.org/10.1177/00045628302000601

Vreeburg, S. A., Zitman, F. G., Pelt, J. V., Derijk, R. H., Verhagen, J. C., Dyck, R. V., . . . Penninx, B. W. (2010). Salivary cortisol levels in persons with and without different anxiety disorders. Psychosomatic Medicine, 72(4), 340-347. DOI: https://doi.org/10.1097/psy.0b0 3e3181d2f0c8

Warburton, D. E., Nicol, C. W., & Bredin, S.S. (2006). Health benefits of physical activity: the evidence. Canadian Medical Association Journal, 174(6), 801-809. DOI: 10.1503/cmaj.051351

Weltman, A., Weltman, J., Rutt, R., Seip, R., Levine, S., Snead, D., Kaiser, D., & Rogol, A. (1989). Percentages of maximal heart rate, heart rate reserve, and V̇O2peak for determining endurance training intensity in sedentary women. International Journal of Sports Medicine, 10(3), 212-216. DOI: 0.1055/s-2007-1024903




How to Cite

Do, P., Guo, F., & Warburton, D. . (2021). Effect of Aerobic Fitness on Cortisol Response and HPA-Axis Reactivity at Different Aerobic Exercise Intensities . The Health & Fitness Journal of Canada, 14(2), 42–53. https://doi.org/10.14288/hfjc.v14i2.305




Most read articles by the same author(s)

1 2 3 > >>